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Motivation and Challenge

* Objective
« To detect, recognize, and localize (both temporally and spatially) attacks

from multiple sources using data collected from the ultra-wide-area
monitoring network (e.g., FNET)

 Motivation

« Conventional power systems are designed to be robust to accidental
failures (e.g., N-1, N-2, or even N-3 contingencies). Nevertheless, under
the post 9/11 environment, simultaneous coordinated strikes become a
realistic threat, which will lead to N-X operations under emergency.

« Researchers at the Trustworthy Cyber Infrastructure for the Power Grid
(TCIP) Cyber Trust Center also reported [1] that through the usage of a
commercially available Power simulator and publicly available power
flow data, a small set of breakers was found whose tripping would lead
to a blackout almost the scale of the August 2003 blackout. This will put
the interconnected power network in a greater danger that the original
power system planner had never envisioned.

[1] W. H. Sanders, “Building cyber-physical resiliency into the grid,” IEEE-SA
Computer Society Smart Grid Vision Workshop, August 8, 2011.
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Background: Mixture and Unmixing

« Target detection at the subpixel
level in remote sensing

« Speaker identification - The
cocktall party problem

 Image restoration < = o0
« Heat source analysis from surface
temperature evolution pattern in = :H""
bulk metallic glass (BMG) e _,
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« Hidden weapon detection using

Event Unmixing

BCuURENT

1-3



Rationale — Event Unmixing

Events seldom occur in an isolated fashion. Cascading events are more common and
realistic which create multiple disturbances. The electromechanical waves generated
from multiple disturbances will interfere with each other and the measurements taken
at an FDR would more than likely be a mixture.

Linear mixture analysis has been widely used due to its effectiveness and simplicity,
where the sensor readout at a single location is given by
X=As+n
¢« X:an l-element column vector, the measured mixture or observation
« A: an Ixc source matrix with each column indicating a root event signature

¢« s:acxl column vector or abundance vector, indicating the mixing coefficients satisfying
certain constraints

¢« n:the noise vector

If given A, i.e., the signature matrix, s is traditionally estimated using methods such as
Unsupervised Fully Constrained Least Squares (UFCLS) or Nonnegatively
Constrained Least Squares (NCLS). Event detection can be conducted by identifying
the event signature with a non-zero (or comparatively larger) corresponding
abundance. The problems in traditional abundance estimation methods include

« The estimated abundance may have values on each signature — not suitable for rare event

detection
« Very computationally intensive
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Initial Trial

X=As+n
Unsupervised unmixing using minimum volume
constraints, J(A) 0
minimize (A, S)=EHX—ASH; +AJ(A) o OOA&OS
o o

subjectto A=0, S=0, 1'S=1"

0 0
Failed!
What are the challenges? Band;j |

« The construction of signature matrix, A o0 O\

« The dynamics of cascading events \/EM
What is a good constraint? BML i

Band i

¢« The sparsity constraint
« Signature training and learning
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Root Event Signatures

» Generator trip (gt) e

+ Load drop (Id) .
* Oscillation

E L 5595 1 1 1 1 1 1 1 1 1
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| [Ty e s : Time [D.18)
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Algorithm - Sparsity-constrained Unmixing

e X=As+n
« Abundance estimation via sparse coding

« The sparse coding formulation (an NP-hard problem): minimize
the number of non-zero elements in s while s is subject to the
least-square constraint

min [s], st ds-x[; £

« If sis sufficiently sparse, we can solve for s by instead
minimizing the |;-norm

min HSHl S.t. HAs—XHi f£e
« “Feature sign search” is used to solve the optimization problem

s=argmin |.X - As||§ +s],
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Sparsity-constrained Unmixing — Dictionary
Construction

« Signature dictionary learning — Design an overcomplete
dictionary that incorporates temporal information

« Training root event signature (done offline)

= Generator trip (547 from El, 415 from WECC, 189 from ERCOT)
and load shedding (160 from EI, 346 from WECC) data are
retrieved from the FNET database

» Since FNET doesn’t detect line trips yet, we use PSS/E to
generate signatures for line trips. A 16,000-bus model of the El was
used for simulation. Approximately 75 buses corresponding to
actual FDRs were selected as the measurement points, and lines
adjacent to these buses were tripped one at a time (257 training
cases)

» K-mean clustering is used to extract 6 (i.e., k=6) representing root
event signatures for each event from all the above training cases
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Signatures Learned
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Dictionary Construction — Cont’

« Construction of overcomplete dictionary - Temporal span of root event
signature (done online)

= For each root event signature learned above (6 for each of the three events),
time-shift the signature by 0.1t seconds, t =1,...,200, to the right to generate
all possible occurrence time of that event. Note that the interval 0.1 second
can be changed with higher resolution, e.g., 0.01 second, which means the
algorithm can resolve multiple events occurred at a finer scale.

0E
o
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Results — Simulated Events

 The model: A 23-bus model supplied from PSS/E is used. The model represents a small
power system with 3,200 MW of load. The system contains several different voltage levels
ranging from 13.8 kV at the generator buses to 500 kV at the transmission buses. It
represents a variety of generation sources including nuclear, thermal, and hydro.

* Root event signatures: since this is a small power grid, we simply extracted 5 generator
trip signatures (gt), 3 line trip generators (It), and 5 load drop signatures (Id) to form the
root event signature matrix

« Both single event and multiple event detections are accurate in terms of both detection
and temporal localization

Slnqle event detectlon I\/Iultlple event detectlon

0 02 . 05 o
005 —— \__w_
L i"‘f“?.' e % i R T w2 TS e v ‘ o
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Left: original signal vs. reconstructed signal. Mid: sparse coefficient or abundance. Right: event type detection



Simulation — Single Event
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Simulation — Multiple Events

What pattern event happened?
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Results — Real Case (Single Event)

» Single Event Detection and Temporal Localization
- One single generator trips were successfully detected from 10 out of 10 FDRs.
- Each FDR detected the events with different time delay which can be further
utilized for event localization purpose.

sparse coefficient Reconstruction comparison, FOR-ID=2, MSE=0.B74e-04
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Event detection on FDR 2: one event is detected and temporally localized as the occurring time of the largest coefficient.

FDR 1 2 3 - 5
GenTripl B.45 | 845 | H.Bs B.45 8.68

FDR 6 7 8 0 10
GenTripl 008 | 7.8 | 7.28 B.45 1.858

Temporally localized on different FDRs!

=598 S0 100 150 00 250 S0 350 400 & 500 Why different occurring time?
Time [0 15) The FDRs will receive event wave at different time.
Plots of 10 raw FDR signals without denoising. The delays are very important for spatial localization!
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Results — Real Case (Multiple Events)

* Multiple Event Detection and Temporal Localization
- Two generator trips (event3 and event4) were successfully detected from 16 out of
18 FDRs and two line trips were successfully detected from 17 out of 18 FDRs.
- Each FDR detected the events with different time delay which can be further
utilized for event spatial localization purpose.

sparse coefficient Reconstruction comparison, FOR-ID=14, MSE=2.634e-04
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Plots of 18 raw FDR signals without denoising. Each individual event is temporally localized on
(Denoising is necessary before performing different FDRs!

event detection algorithm!)
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Event Spatial Localization

» Traditional Localization Method
- Wave-front Arrival Time (detected based on an empirical threshold!)

FDR18 - NY
60.031 FDR7 - MISS
FDR11 - CALV
60.025 FDR13 - MidWest
FDRZ26 - Louisville
80.02 |- FDR28 - METC
80.015 |
80.01|
80.005 |-
g0l Wave-front Arrival Time! [3]
5g.005|. | '-\ T
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- Geographic and Geometrical Triangulation [3].
Assumption: the time delay is linearly related to the distance between the FDR
location and the event location.

EUREN I 3] T. Xia, H. Zhang, R. Gardner, J. Bank, J. Dong, J. Zuo, Y. Liu, L. Beard, P. Hirsch, G. Zhang, and R. Dong, “Wide-area
frequency based event location estimation,” in Power Engineering Society General Meeting, IEEE, 2007, pp. 1-7.



Event Spatial Localization

* Limitations of Traditional Localization Method
* Only can handle single event, cannot discriminate multiple events
involved cascading event!
* The wave-front arrival time 1s not accurate enough for spatial localization!

« Advantages of the Proposed Event Unmixing Algorithm
* Can unmix each individual single event from a mixture signal that multiple
events cascadingly involved!
* The detected occurring time of each individual event should be more stable!
(More robust to noise and more accurate)

* Triangulation

* Use the same triangulation algorithm but with good spatial localization
performance.
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Event Spatial Localization — Single Event

| - . ' lllObl\"sll
y | { )
lllinois . ’, |n& | Ohio ot

ot murance._Dayson Columbus

SE N Ny T R Ty o COMBUS < Y (g (- A SV et N .
g | Indianapolis A 2 1§ Positions of |
< 5 v Cincinnati X’ v , -

- . Bleontington ! s @ Ground truth
g % 5 T Ve i . v —
St,"‘fouis 5 Lovigville SuTTi West Virginia /4 & Loc estivia |
N> . ﬁiva%sviﬂe N P ' R~ NM River Gorgs 75 ’ i vi

Riw g ',.: T T Lexmgton Nltlonnl R:v«‘ /' " Ricl LOC eStI via [
( o\ » o )
LAY ; * K.ntucky > S ad R&'! ec Virginia
_ n 4 & Mammoth Cave 4 s P ;
N - National Park = S 1 ra—
: / ,«) \.Iamswll* A % & 4 O i j
A i reensboro
s ) shville “noxvulle Arg © , el o
BALE Y Tonnosso‘ ¥ Alhwlllo M2 Nerth Caroli { 2o b | (4
L Charlotte B S g i
"“{39’“" : $ Chattanooga Py ; Fayettevile ! S ey = e
DA ol Y Hunisviie 1/ o ‘ = Cace F . e
¥ ) tm SV > D . % 1 lm aar o “"‘Q 3
: 1 ' Vol o Northwest =
v } o MeiTatts o % \_olumbla
X ’,‘ Bi " ‘- ey R South Carolina
‘ |rmu‘1>g am " Atlanta . \ Myrtl
Mississipp | Tuscsioas Augustao\‘ 4‘ Y‘
Alabama . | Wkon

Mallimabeiim Mo manl -

Rural wWMap data €2013 Google, INEGI -

@cureNT  Localization error: 60 miles




Event Spatial Localization

« Example of a Multiple-Event

Individual Event Separation
Apply Wave-front arrival detection on each
individual event

patterns of generator tripd
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Event Spatial Localization — Multiple Event
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Challenge of LTB

Similarity: Different disturbances may cause the similar reaction on certain buses

Ground truth: a line trip between bus 91-93

o

|
— MV\/\/\/W\
Ground truth: a load drop o |
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Ground truth: a generator trip on bus 92
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New Idea

Trip a genngtoﬁ rV -
bus 21 ‘ )

Selection
/Mean

m— Ml

@ Signal on each bus, NPCC grid with 140 buses
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New Idea

Basic idea: Unmixing/sparse coding Is based on a group signals

Instead of a single signal.
|
“‘“H“. “‘ >
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\

A
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Experiment results

Comparison: previous strategy and new strategy ( different signal extraction
methods and different spares coefficient analysis method)

B R-R Recog. Rate Detection accuracy B False alarm rate
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Next Step ...

« Further improve signal quality or frequency estimation accuracy
« Signature dictionary learning

« Traditional parametric models using a fixed and finite number of parameters,
e.g., k-means, can suffer from over- or under-fitting of data when there is a misfit
between the complexity of the model.

« The Bayesian nonparametric approach is an alternative to parametric modeling
and selection. By using a model with an unbounded complexity, underfitting is
mitigated, while the Bayesian approach of computing or approximating the full
posterior over parameters mitigates overfitting.

« The Dirichlet Process (DP), one of the most popular Bayesian nonparametric
models, will be used for the learning of representative root event signatures

« Not much improvement
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